重阅经典 与巨人同行
作者:JKS    更新时间:2018-09-18 10:29:25

我阅读《数学简史》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中.碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样.读《数学简史》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中.我不求透彻的理解、不求系统的把握,《数学简史》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学也让我循着数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去2000年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。   

数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:数学在一门科学中的应用程度,标志着这门科学的成熟程度。在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

让我们看一看20世纪人们对这门学科的态度。首先,数学主要是一种寻求众所周知的公理法思想的方法。这种方法包括明确地表述出将要讨论的概念的定义,以及准确地表述出作为推理基础的公理。具有极其严密的逻辑思维能力的人从这些定义和公理出发,推导出结论。数学的这一特征由17世纪一位著名的作家在论及数学和科学时,以某种不同的方式表述过:数学家们像恋人……承认一位数学家的最初的原理,那么他由此将会推导出你也必须承认的另一结论,从这一结论又推导出其他的结论。

如果数学的确是一种创造性活动,那么驱使人们去追求它的动力是什么呢?研究数学最明显的、尽管不一定是最重要的动力是为了解决因社会需要而直接提出的问题。商业和金融事务、航海、历法的计算、桥梁、水坝、教堂和宫殿的建造、作战武器和工事的设计,以及许多其他的人类需要,数学能对这些问题给出最完满的解决。在我们这个工程时代,数学被当作普遍工具这一事实更是毋庸置疑。

数学的另外一个基本作用(的确,这一点在现代特别突出),那就是提供自然现象的合理结构。数学的概念、方法和结论是物理学的基矗这些学科的成就大小取决于它们与数学结合的程度。数学已经给互不关联的事实的干枯骨架注入了生命,使其成了有联系的有机体,并且还将一系列彼此脱节的观察研究纳入科学的实体之中。

进行数学创造的最主要的驱动力是对美的追求。数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。

除了完善的结构美以外,在证明和得出结论的过程中,运用必不可少的想像和直觉也给创造者提供了高度的美学上的满足。如果美的组成和艺术作品的特征包括洞察力和想像力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。

尽管历史已清楚地表明,上述所有因素推动了数学的产生和发展,但是依然存在着许多错误的观点。有这样的指责(经常是用来为对这门学科的忽视作辩解的),认为数学家们喜欢沉湎于毫无意义的臆测;或者认为数学家们是笨拙和毫无用处的梦想家。对这种指责,我们可以立刻作出使其无言以对的驳斥。事实证明,即使是纯粹抽象的研究,也是有极大用处的,更不用说由于科学和工程的需要而进行的研究了。圆锥曲线(椭圆、双曲线和抛物线)自被发现两千多年来,曾被认为不过是富于思辨头脑中的无利可图的娱乐,可是最终它却在现代天文学、仿射运动理论和万有引力定律中发挥了作用。

实用的、科学的、美学的和哲学的因素,共同促进了数学的形成。把这些做出贡献、产生影响的因素中的任何一个除去,或者抬高一个而去贬低另外一个都是不可能的,甚至不能断定这些因素中谁具有相对的重要性。一方面,对美学和哲学因素作出反应的纯粹思维决定性地塑造了数学的特征,并且作出了像欧氏几何和非欧几何这样不可超越的贡献。另一方面,数学家们登上纯思维的顶峰不是靠他们自己一步步攀登,而是借助于社会力量的推动。如果这些力量不能为数学家们注入活力,那么他们就立刻会身疲力竭,然后他们就仅仅只能维持这门学科处于孤立的境地。虽然在短时期内还有可能光芒四射,但所有这些成就会是昙花一现。

克莱茵用了这么大的精力来写作《古今数学思想》其意图是什么呢?如果把他与我国的司马迁相比较,会发现,司马迁只是忠于事实,作好历史备查,供后人对历史评价,从中提示当朝少犯错误,少走弯路地发展社会。而克莱茵从一开始就带了写作观点,明确地表达出:数学是来源于人类在生活、生产、劳动中实际需要之必然。数学的发展并不是一帆风顺的,而是要与各种上帝和霸权势力及悲观思想的斗争中发展前进的。所以说克莱茵的写作真实意图在于鼓励人们不断地克服各种干扰积极勤奋地发展数学,相信数学能给人类社会的发展带来巨大的作用。

我们人类社会的生活、生产、科研是绝对离不开数学的运用。数学的发展会给人类社会的发展带来巨大的扛杆作用。千万不能小瞧这根扛杆。在学校各科教学中,多数学生最容易掉队的首先就是数学学科。尽管如此,我们的文理科高考还是统有数学科。这保证了数学的社会普及性需要。我们作为数学数学教师,更是重担在肩,知难也进,义不容辞地做好本职工作。

在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。

众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。

读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:数学在一门科学中的应用程度,标志着这门科学的成熟程度。在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,罗素悖论使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!

数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的东方数学色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。

从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。

 

版权 江苏省东海钱柜娱乐官网  关于我们 | 网站地图 | 后台登录
地址:江苏省东海县牛山镇富华路  电话:0518-87281068 
邮编:222300 苏ICP备12024651号
江苏省东海钱柜娱乐官网 All Rights Reserved